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An analytical model of a wood-cutting circular saw blade is developed for the purpose of
understanding the mechanics of a lateral vibration instability known as washboarding. The
governing equation developed contains inertial, gyroscopic and sti!ness terms based upon
the saw plate characteristics with the cutting forces being represented by the product of
a time-dependent periodic function and the lateral displacement of the saw tooth. A stability
analysis of the system is shown to produce predictions that are consistent with experimental
data.

( 2001 Academic Press
1. INTRODUCTION

A relatively common problem in the North American primary wood-cutting industry (i.e.,
that part of the industry involved with the production of sawn lumber from logs), is the
appearance of a &&washboard'' pattern on the surface of the wood. Such a pattern is
characterized by a sinusoidal-like variation in board thickness in both the cutting direction
and normal to this direction. Figure 1 shows an example of such a pattern. (A related
phenomenon occurs in metal cutting and is referred to as &&chatter'' in that context.) In the
wood industry, the resulting board thickness variations are subsequently removed by the
planing process. This results in higher than necessary sawdust production. The physical
mechanisms that give rise to the washboarding phenomenon have not been clearly
identi"ed and the problem is dealt with in the industry by trial and error.

The general problem to be solved is that of predicting the self-excited vibrations that are
involved in the interaction between a rotating #exible circular saw and a workpiece. The
aim of the present work is to present an analysis of the stability characteristics of the blade
while subjected to cutting forces and to de"ne those circumstances under which
washboarding will occur. A series of experimental studies [1] have been conducted in order
to shed light on the mechanisms involved in the development of vibration dynamic
instabilities that occur in wood-cutting saw blades.

Although much research has been conducted on circular saw dynamics in the past three
decades, most of this research has focused on the dynamics of an idling saw blade. Carlin
et al. [2] "rst studied the e!ects of a concentrated radial edge force on the natural
frequencies of a spinning disc and analyzed the manner in which the asymmetric stress "elds
caused by the edge forces a!ect the natural frequencies of the disc. Radcli!e and Mote [3]
considered a more general concentrated edge force with both radial and tangential
components. Chen and Bogy [4] determined the membrane stress "elds caused by
a stationary friction force in a spinning disc, and found that these asymmetric membrane
stress "elds cannot cause instability in a spinning disc. Chonan et al. [5] studied the
self-excited vibration of a pre-tensioned saw blade subjected to a small in-plane slicing force,
0022-460X/01/200907#16 $35.00/0 ( 2001 Academic Press



Figure 1. Washboarding pattern on a sawn board.
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and their results also showed no signi"cant e!ect of in-plane forces on the natural
frequencies and stability of the blade.

Chen [6] reformulated the problem of a rotating disc subjected to a stationary
concentrated in-plane radial force and included the e!ects of gyroscopic terms. It was
reported in his paper that both divergence and #utter instabilities can be induced by
stationary in-plane radial forces at critical or supercritical speeds. In an independent study,
Shen and Song [7] treated a cutting saw blade as a rotating disc subjected to stationary
follower edge forces with both radial and tangential components and predicted the
instability of this system using the multiple scale method. It was reported in their paper that
the radial edge force determines the rotating speed regions where the instability occurs and
the tangential edge force only a!ects the width of the instability zones without introducing
new unstable regions.

Recently Chen [8] modelled a saw-blade system as a spinning disc under a space "xed
periodically varying edge force and investigated the dynamic stability of the rotating disc
subject to a pulsating in-plane radial force by using an extended multiple scale method. Tian
and Hutton [9] considered the stability analysis of a rotating disc subjected to a wide class
of excitation mechanisms. The present study follows from this work and considers a cutting
model involving multiple moving concentrated cutting forces over a given space-"xed
sector to investigate the stability characteristics of the saw-blade and work-piece
interaction. In previous research, the self-excited instability in saw-blade cutting was
assumed to be produced by in-plane edge forces. A more important cutting force which was
isolated in the experimental tests [1] conducted as a part of this study, and is the likely
reason for the washboarding, has not been investigated in previous studies. This force is
a lateral regenerative cutting force. Machine tool chatter in turning and milling operations
is also induced by regenerative cutting forces. Machine tool chatter has been an active
research topic for some time [10}14]. However, it appears that the work conducted in this
"eld has not considered the gyroscopic e!ects associated with such systems [15].

New developments presented in this work involve solution methods for the stability
analysis of a rotating disc subjected to multiple moving concentrated regenerative cutting
forces over a given space-"xed sector. The basic Fourier series method is extended to solve
the stability problem for time-varying equations with time-lag terms.

2. ANALYSIS OF INSTABILITIES DUE TO MULTIPLE MOVING REGENERATIVE
CUTTING FORCES

In the dynamics of saw-blade cutting the cutting forces have traditionally been modelled
as constant or pulsating in-plane edge forces [7, 6]. The force produced by #ank cutting,
which is likely to be the primary cause of the washboarding phenomenon, has been
neglected in previous research. A detailed theoretical study on the instability induced in
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a rotating saw by multiple moving regenerative cutting forces applied over a given
space-"xed sector is presented in this section.

Figure 2 shows a diagrammatic representation of a rotating circular saw blade which cuts
a work piece over a space-"xed sector. It can be seen from the sectional plot A}A that, if the
blade oscillates laterally, there is an extra lateral cutting area between two successive teeth
associated with both the transverse response w (r

0
, h

j
, t) of the current tooth (the jth tooth)

and the transverse response w(r
0
, h

j
, t!¹ ) of the previous tooth (the ( j!1)th tooth) at

a given location (r
0
, h

j
) on the workpiece. ¹ is the tooth-passing period (i.e., the period

between successive tooth engagements). Lateral compression between the workpiece and
the teeth in this extra cutting area causes the lateral cutting force f

cj
(t). This type of cutting

force is called regenerative.
In actual cutting the saw blade will be subjected to radial and tangential in plane cutting

forces as well as lateral forces. Exact modelling of such forces is di$cult and is further
complicated by the non-homogeneous nature of the wood. In this study, the following
assumptions are made:

f The only forces acting are lateral forces caused by #ank cutting.
f The cutting forces are always normal to the undeformed plane of the saw.
f The cutting forces are a linear function of relative tooth displacement.

Thus, the lateral regenerative cutting forces are assumed to be of the following linear form:

f
c
(t)"

Nt

+
j/1

f
cj
(t)"!

Nt

+
j/1

(1/r)K
r
[w(r, h, t)!w (r, h, t!¹ )]d (r!r

0
)d (h!h

j
)g (h

j
), (1)

where N
t
is the total number of saw teeth and K

r
is a cutting force coe$cient, assumed to be

constant, which is determined by the geometry, properties and speeds of the blade, and by
the characteristics of the workpiece. (For an anisotropic material, K

r
would be a function of

the position h
j
in the space-"xed co-ordinates.)

The de#ection of the present and previous tooth at the location (r
0
, h

j
) respectively are

given by

w(r, h, t)d(r!r
0
)d (h!h

j
)"w (r

0
, h

j
, t)
Figure 2. Lateral regenerative cutting force produced in a rotating circular saw.
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and
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), and
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is the angular tooth pitch),
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)"0, otherwise.

h
st
, h

ex
are the start and exit immersion angles of the cutting range respectively.

The saw is modelled as an annular circular plate of inner radius a, outer radius b, and
thickness h, rotating at a constant angular velocity X. The governing equation for
transverse vibration in terms of the lateral displacement w (r, h, t ), with respect to
space-"xed co-ordinates, can be written as

D+ 4w#oh(w
,tt
#2Xw

,th#X2w
,hh)#¸

s
(w)"¸

n
(w)#f

c
(t),

where D and o are the #exural rigidity and mass density of the plate respectively.
¸
s
is the membrane operator associated with the axisymmetric stress "elds due to the

centrifugal force and/or the stress tensioning. ¸
n
is the membrane operator associated with

the asymmetric stress "elds generated by in-plane edge loads, such as in-plane cutting
forces, which, under certain circumstances, may cause instability in such systems. In the
present analysis, the e!ect of ¸

n
will be neglected. f

c
(t) represents the transverse cutting

forces generated by the interaction between the saw blade and the workpiece.
Substituting equation (1) into the equation of motion of the rotating disc and applying

the Galerkin procedure leads to an equation of motion of the form

[M]MxK (t)N#[G]MxR (t)N#[K]Mx(t)N#(1!e~TD)[A (t)]Mx(t)N"M0N, (2)

where e~TD is a time delay operator (i.e., e~TDMx (t)N"Mx(t!¹ )N), and [M], [G] and [K]
represent the mass, gyroscopic and sti!ness matrices, respectively, which may contain
centrifugal sti!ening and/or stress tensioning e!ects. The details of [M], [G], [K] and MxN
are given in reference [9]. [A(t)] is a periodic (¹ ) time-varying matrix associated with the
cutting forces.

The solution of equation (2) with periodic coe$cients may be assumed in the form of

a Fourier series with frequency components: j$iku (k"0, 1, 2,2) (u"2n/¹ ; i"J!1)
[16, 17].

Mx (t)N"CMb0N/2#
=
+
k/1

(Ma
k
N sin kwt#Mb

k
N cos kut)D ejt, (3)

where Mb
0
N, Mb

k
N and Ma

k
N are time-invariant coe$cient vectors; and j is the characteristic

variable of the system.
Since [A(t)] is periodic, it can also be expressed in a Fourier series form as

[A(t)]"
1

2
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]#
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k
] sin kut#[B

k
] cos kut), (4)
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where
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[A(t)] dt, [B
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2
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0
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k
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2
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(5)

Substituting equations (3) and (4) into equation (2) and equating the coe$cients of ejt,
ejt sin kut and ejt cos kut to zero lead to the following form of the characteristic equation of
the system:

(j2[H
2
]#j[H

1
]#[H

0
]#(1!e~Tj)[¸])MsN"M0N, (6)

where MsN"(Mb
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in the Fourier series. The coe$cient matrices [H
2
], [H

1
], [H
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[M], [B
0
], [B

k
], [A

k
] and u.

For the zeroth order approximation (i.e., N
s
"0), equation (2) can be written as

(j2[M]#j[G]#[K]#(1!e~Tj)[B
0
]/2)Mb

0
N"M0N. (7)

Appendix A contains a de"nition of the coe$cient matrices of equation (6) for higher
order approximations.

The single-mode solution for the blade de#ection is assumed to be

w(r, h, t)"R
mn

(r)[C
mn

(t) cos(nh)#S
mn

(t)sin(nh)], (8)

where R
mn

(r) satis"es the plate boundary conditions corresponding to a clamped inner
radius and a free outer radius.

Substituting equation (8) into the governing plate equation (without considering
centrifugal sti!ening or tensioning e!ects) and applying the Galerkin procedure leads to the
equation
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and where
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The coe$cient matrices [B
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calculated e$ciently by using the following scheme:
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Substituting equations (11)} (13) into the characteristic equation (6) and employing
MuK ller1s optimization algorithm [18] to solve these complex non-linear equations yield the
eigenvalues of the system.

In the case of multiple modes, the response at the location (r
0
, h

j
) for a rotating circular

saw subjected to regenerative cutting forces can be assumed to have the form
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and the response of the blade at the previous cut (t!¹ ) at the same location can be
expressed as
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where S
mn

(t) and C
mn

(t) can be assumed to have the same form as described in equation (3)
with frequency components: j$iku (k"0, 1, 2,2, u"2n/¹ ).

Substituting equation (1) along with equations (14) and (15) into the governing equation
and applying the Galerkin procedure result in the following equations:
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(t) and C
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(t) are then assumed to have form expressed by equation (3).

3. NUMERICAL RESULTS

In this section the results of numerical modelling, based upon the above developments,
are presented and compared with experimental results.

Figure 3 shows the Campbell diagram (the variation of natural frequencies as measured
by a stationary observer as a function of blade speed) and the variation of the real parts of
the system eigenvalues as a function of speed for the (0, 2) mode of a rotating clamped
circular saw-blade (a"0)08m, b"0)28m, h"0)0015m, E"2)08e#11 N/m2,
o"7850kg/m3, l"0)3, h

st
"203, h

ex
"503, N

t
"40). From this "gure it is predicted that

the primary instability region A (i.e., the widest region for which the real part of the
eigenvalue is positive) occurs when the tooth-passing frequency f

t
"(X/2n)N

t
is greater than

the natural frequency f
n
(X) and less than twice this natural frequency, namely in the region

[ f
n
(X ), 2 f

n
(X)] (note that the natural frequency f

n
itself is also a function of rotation speed

or tooth-passing frequency f
t
). It may be noted that both the forward and the backward

wave modes are unstable. This analysis was conducted using equation (7), i.e., using a zeroth
order approximation. Further analyses using "rst and second order approximations gave
essentially the same results.



Figure 3. (a) Natural frequency and (b) instability regions of a rotating disc due to moving regenerative cutting
forces; mode"(0, 2), K

r
"10 N/m; zeroth order approximation** backward wave mode, } } } forward wave

mode.
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It was also found, from this Campbell diagram, that the rotating blade, subjected to
regenerative cutting forces, also becomes unstable when

f
t
"[1

2
f
n
(X), 2

3
f
n
(X )] (Region B ),

f
t
"[1

3
f
n
(X ), 2

5
f
n
(X)] (Region C),

f
t
"[1

4
f
n
(X ), 2

7
f
n
(X)] (Region D),

F

The general expression for unstable regions of a mode with natural frequency f
n
(X ) is

given by

f
t
"C

1

k
f
n
(X ),

1

k!0)5
f
n
(X )D (k"1, 2,2). (18)

From the simulations it was found that this expression is true for all modes. Thus, for each
mode there are a number of di!erent speed regions that will correspond to unstable
behaviour. Which mode will result in washboarding depends upon the ability of the system
to input more energy into that mode than is consumed by the energy dissipation
mechanisms at work in that mode. In the experimental work, the primary region in which
washboarding was excited corresponded to the widest instability region predicted, i.e., that
region for which f

t
'f

n
. From these tests it was found that a number of di!erent modes were

excited at a given blade speed as would be expected from equation (18). The dominant mode
was the one whose frequency was closest to the tooth-passing frequency. Note, however,
from Figure 3 that as the tooth-passing frequency gets too close to the natural frequency the
real part of the eigenvalue tends to zero and the response in that mode disappears. In the
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present context, low-frequency modes are not excited because the saw cannot cut wood at
slow speeds.

Cutting tests were conducted at di!erent rotating speeds using clamped saw blades each
with forty teeth, with inner radius a"0)0952m, outer radius b"0)265m and thickness
h"0)00229m; cutting two 36 mm deep Hemlock boards. The blades used were commercial
blades that had been found to washboard in service. The blades were of uniform thickness
with no holes or slots. The internal stress distribution was unknown.

In order to compare the experimental data with the stability predictions, the values of the
natural frequencies of high order forward travelling modes are required. To this end,
Figure 4 shows the Campbell diagram of a saw blade predicted from the measured natural
frequencies of a stationary blade. In this prediction, the sti!ening e!ect due to blade
rotation has been neglected based upon the observation that, for the high-frequency modes
excited by the washboarding the e!ect of rotational sti!ening is small. On this diagram the
line f

t
"f

n
is superimposed.

According to equation (18), and considering the case k"1, zones of unstable response for
a mode with n nodal diameters could be expected at rotating speeds immediately above the
crossing points denoted by (0, nF). Figure 5 summarizes the results of experiments using the
same blade. In Figure 5, the shaded region indicates those regions in which the
washboarding was most pronounced. The individual points marked correspond to speeds
at which low levels of washboarding were observed. It was found that the major
washboarding zone lasted for a speed range of 100}150 r.p.m. As may be noted, the
washboarding zones correspond to the unstable regions predicted by equation (18). The
experimental results also provide qualitative con"rmation of the analytical prediction that
the magnitude of the real part of the eigenvalue is a maximum at a tooth passing frequency
close to, but greater than the natural frequency of the dominant mode being excited.

Figure 6 compares the real parts of the eigenvalues for di!erent K
r
values. As may be

noted, although the magnitudes of the real parts of the eigenvalues grow with the increase of
K

r
the instability regions remain almost unchanged for this set of K

r
. A similar situation

occurs when the number of active cutting teeth increases based on a change of the cutting
Figure 4. Campbell diagram predicted from the stationary natural frequencies.



Figure 5. Rotational speeds at which washboarding was observed.

Figure 6. E!ect of cutting coe$cient K
r

on instability regions of backward-wave mode (0, 2), zeroth order
approximation (**, K

r
"10 N/m; } } }, K

r
"N/m; } - }, K

r
"90 N/m).
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depth of the workpiece, as shown in Figure 7. These results correspond to experimental
observations that the intensity of washboarding is increased with increasing wood density
(increasing K

r
), and with increasing depth of cut.

Figure 8 shows a two-mode solution for the rotating circular saw blade which has the
same geometry as that used for the results shown in Figure 3. As may be noted, the results
related to each mode in the two-mode solution are very similar to the ones from the
single-mode solution and no coupling instability regions are found at subcritical speeds.
This "gure also reveals that the real parts of the eigenvalues in mode (0, 5) are greater than



Figure 7. E!ect of di!erent numbers of active cutting teeth on instability regions of backward-wave mode (0, 2);
zeroth order approximation; K

r
"10 N/m (**, 2 teeth; } } }, 3 teeth; } - }, 4 teeth).

Figure 8. (a) Natural frequency and (b) instability regions caused by moving regenerative cutting forces on
modes (0, 5) and (0, 6); K

r
"100 N/m; zeroth order approximation (**, mode (0, 5B); } } }, mode (0, 5F); } - },

mode (0, 6B); - - -, mode (0, 6F)).
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the ones in mode (0, 6). From numerous stability simulations in saw-blade cutting and metal
cutting conducted as part of this research work, it was found that the levels of the real parts
of the eigenvalues for di!erent modes are associated with the magnitude of the modal
displacements of the stationary blade at the cutting points. This implies, in this idealized
model, that the displacements contributed by mode (0, 5) were greater than those from
mode (0, 6).

Figure 9 shows a two-mode Campbell diagram that extends into the supercritical speed
range. From this "gure it can be seen that, in such a system, both the backward-wave modes
become unstable at supercritical speeds.

Figure 9 also illustrates that several modes of the blade can be excited simultaneously and
di!erent number of vibration modes may be excited at di!erent tooth-passing frequencies



Figure 9. (a) Natural frequency and (b) instability regions at subcritical and supercritical blade speeds for modes
(0, 5) and (0, 6); K

r
"100 N/m; zeroth order approximation (**, mode (0, 5B); } }}, mode (0, 5F); } - }, mode

(0, 6B); - - -, mode (0, 6F)).
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(or rotating speeds). It should be mentioned that in saw-blade cutting the levels of the
self-excited vibration of the blade during cutting is not only related to its stability
characteristics (i.e., the real parts of the eigenvalues of the system) but are also associated
with its initial vibration conditions.

4. KINEMATICS OF WASHBOARDING

The above analysis predicts speed ranges at which unstable blade response can be
expected based upon the linear undamped plate model used in this study. In order to predict
the actual displacements would require an analysis that accounted for the geometric
non-linear behaviour of the saw, the energy dissipation mechanisms, and a more detailed
cutting force model. Such a task is beyond the scope of the present study. Instead a simple
kinematic analysis of the actual response of the blade as it passes through the wood is
presented and shown to be consistent with experimental results.

Figure 10 shows the positions of the teeth at the previous and current cuts. It can be
assumed that tooth A reaches its maximum lateral displacement A

0
at t"0 when this tooth

enters the wood. The lateral response of the blade at a point stationary in space can thus be
expressed in the form w"A

0
cos(2n f

n
t) (where f

n
is the resonant frequency of the blade),

based on the assumption that only one mode is excited. The next tooth (i.e., tooth B ) will
take 1/ f

t
of time to reach the same vertical position. At this point in time, the blade vibrates

laterally to a location where w
1
"A

0
cos (2n f

n
D¹ ). From Figure 11 it is clear that

D¹"1/ f
n
!1/ f

t
(19)

for the case that 2 f
n
'f

t
'f

n
.

It is assumed that there are N teeth passing through the same horizontal line CD in the
time period dt (dt must be such that N is an integer). Thus, the lateral displacement of the



Figure 10. Tooth kinematics during cutting. (a) side view at t"0; (b) plan view of tooth motion over one
complete cycle.
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Nth tooth can be expressed in the time domain as

w
N
"A

0
cos (2n f

n
ND¹ ) (N"1, 2,2), (20)

where N"f
t
dt and dt"x/< (where < is the feed speed of the wood).

Substituting equation (19) and the above expressions for N and dt into equation (20)
results in a lateral displacement w (x) in the space domain x, where

w (x)"A
0
cosA2n

f
t
!f

n
<

xB"A
0
cosA2n

1

j
x

xB, (21)

which is also the pattern produced by the teeth of the blade along an arbitrary horizontal
line on the cut surface. Thus, the wavelength of the washboarding pattern can be written as

j
x
"

<

f
t
!f

n

. (22)

Note that equation (22) is derived based on the assumption that the response of the blade
is purely harmonic. From this equation, it can be seen that the wavelength j

x
is

proportional to the feed speed of the workpiece < and is inversely proportional to the
di!erence between the tooth-passing frequency f

t
and the resonant frequency of the blade f

n
.

A comparison was made of the washboarding patterns produced by the saw-blade with
approximately equal feed speeds of the workpiece (<"0)84 m/s) but di!erent D f"f

t
!f

n
.

The di!erences between f
t
and f

n
were D f"36)7 Hz for case (a) and D f"59)8 Hz for case

(b). Thus, the washboarding wavelengths can be predicted from equation (22), and give the
values j

x
"22)8 mm for case (a) and j

x
"14)0 mm for case (b), which agree well with the

measured wavelengths: j
x
"21)8 mm to 22)3 mm for case (a) and j

x
"13)0 mm to 13)4 mm

for case (b).

5. SUMMARY

An analysis of the stability characteristics of a rotating disc subjected to discrete
regenerative moving forces applied over a space-"xed sector of the disc rim has been
presented. This analysis shows that there is a number of distinct speed regions over which
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unstable vibration behaviour is predicted. The largest unstable region is associated with the
case where the force excitation frequency was somewhat greater than the natural frequency
of the mode being excited. This model was applied to the analysis of a vibration instability
known as washboarding that occurs in wood cutting circular saws and was shown to
produce accurate simulations of the behaviour of the saw.
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APPENDIX A: COEFFICIENT MATRICES

The characteristic equation of the system is given by

(j2[H
2
]#j[H

1
]#[H

0
]#(1!e~Tj)[¸])MsN"M0N. (A1)



VIBRATIONS OF CIRCULAR SAWS 921
For the "rst order approximation (i.e., N
s
"1), [H

2
], [H

1
], [H

0
] and [¸] are (for the

sake of simplicity of expression, let M"[M], G"[G], K"[K],

[H
2
]"

1
2
M 0 0

0 M 0

0 0 M

, [H
1
]"

1
2
G 0 0

0 G !2uM

0 2uM G

,

[H
0
]"

1
2
K 0 0

0 K!u2M !uG

0 uG K!u2M

, [¸]"

1
4
B
0

1
2
A

1
1
2
B
1

1
2
A

1
1
2
(B

0
!B

2
) 1

2
A

2
1
2
B
1

1
2
A

2
1
2
(B

0
#B

2
)

,

MsN"(Mb
0
N Ma

1
N Mb

1
N)T.

For a general case (i.e., the N
s
th order approximation), the coe$cient matrices in the

characteristic equation can be written as

[H
2
]"

1
2
M

M 0

M

}

0 M

M

,

[H
1
]"

1
2
G

G !2uM 0

2uM G

}

0 G !2N
s
uM

2N
s
uM G

,

[H
0
]"

1
2
K

K!u2M !uG 0

uG K!u2M

}

0 K!N2
s
u2M !N

s
uG

N
2
uG K!N2

s
u2M

,
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[¸]"

1
4
B
0

1
2
A

1
1
2
B
1

2 2 1
2
A

Ns
1
2
B
Ns

1
2
A

1
1
2
(B

0
!B

2
) 1

2
A

2
F F

1
2
B
1

1
2
A

2
1
2
(B

0
#B

2
) 1

2
(B

l
!B

2Ns~l
) 1

2
(!A

l
#A

2Ns~l
)

F } 1
2
(A

l
#A

2Ns~l
) 1

2
(B

l
#B

2Ns~l
)

F } F F

1
2
A

Ns
2 1

2
(B

l
!B

2Ns~l
) 1

2
(A

l
#A

2Ns~l
) 2 1

2
(B

0
!B

2Ns
) 1

2
A

2Ns

1
2
B
Ns

2 1
2
(!A

l
#A

2Ns~l
) 1

2
(B

l
#B

2Ns~l
) 2 1

2
A

2Ns
1
2
(B

0
#B

2Ns
)

,

MsN"(Mb
0
N Ma

1
N Mb

1
N 2 Ma

Ns
N Mb

Ns
N)T,

where the general expression of diagonal sub-matrices in [¸] can be written as

1
2
(B

0
!B

2Ns
) 1

2
A

2Ns

1
2
A

2Ns
1
2
(B

0
#B

2Ns
)

and the non-diagonal sub-matrices above the diagonal sub-matrix shown above can be
expressed in the form

1
2
(B

0`l
!B

2Ns~l
) 1

2
(!A

0`l
#A

2Ns~l
)

1
2
(A

0`l
#A

2Ns~l
) 1

2
(B

0`l
#B

2Ns~l
)

(l"1, 2,2, N
s
!1),

where l is the number of sub-matrix rows counting from the diagonal sub-matrix up to the
second row sub-matrix.

As an example of [¸] when N
s
"3, the following matrix is obtained:

1
4
B

0
1
2
A

1
1
2
B

1
1
2
A

2
1
2
B
2

1
2
A

3
1
2
B
3

1
2
A

1
1
2
(B

0
!B

2
) 1

2
A

2
1
2
(B

1
!B

3
) 1

2
(!A

1
#A

3
) 1

2
(B

2
!B

4
) 1

2
(!A

2
#A

4
)

1
2
B

1
1
2
A

2
1
2
(B

0
#B

2
) 1

2
(A

1
#A

3
) 1

2
(B

1
#B

3
) 1

2
(A

2
#A

4
) 1

2
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2
#B

4
)

1
2
A

2
1
2
(B

1
!B

3
) 1

2
(A

1
#A

3
) 1

2
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0
!B

4
) 1

2
A

4
1
2
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1
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5
) 1

2
(!A

1
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5
)

1
2
B

2
1
2
(!A

1
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3
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2
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1
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3
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2
A

4
1
2
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0
#B

4
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1
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5
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2
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1
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4
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2
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5
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2
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6
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A
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1
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(!A
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.

MuK ller's algorithm with de#ation for solving non-linear equations [18] is employed to "nd the
roots of equation (A1).
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